A Fast, Simpler Algorithm for the Matroid Parity Problem
نویسنده
چکیده
Consider a matrix with m rows and n pairs of columns. The linear matroid parity problem (LMPP) is to determine a maximum number of pairs of columns that are linearly independent. We show how to solve the linear matroid parity problem as a sequence of matroid intersection problems. The algorithm runs in O(mn). Our algorithm is comparable to the best running time for the LMPP, and is far simpler and faster than the algorithm of Orlin and Vande Vate [10], who also solved the LMPP as a sequence of matroid intersection problems. In addition, the algorithm may be viewed naturally as an extension of the blossom algorithm for nonbipartite matchings.
منابع مشابه
Algebraic Algorithms in Combinatorial Optimization
In this thesis we extend the recent algebraic approach to design fast algorithms for two problems in combinatorial optimization. First we study the linear matroid parity problem, a common generalization of graph matching and linear matroid intersection, that has applications in various areas. We show that Harvey’s algorithm for linear matroid intersection can be easily generalized to linear mat...
متن کاملA Algebraic Algorithms for Linear Matroid Parity Problems
We present fast and simple algebraic algorithms for the linear matroid parity problem and its applications. For the linear matroid parity problem, we obtain a simple randomized algorithm with running time O(mrω−1) where m and r are the number of columns and the number of rows and ω ≈ 2.3727 is the matrix multiplication exponent. This improves the O(mrω)-time algorithm by Gabow and Stallmann, an...
متن کاملSolving the Linear Matroid Parity Problem as a Sequence of Matroid Intersection Problems
In this paper, we present an O(r n) algorithm for the linear matroid parity problem. Our solution technique is to introduce a modest generalization, the non-simple parity problem, and identify an important subclass of non-simple parity problems called 'easy' parity problems which can be solved as matroid intersection problems. We then show how to solve any linear matroid parity problem parametr...
متن کاملThe linear delta-matroid parity problem
This paper addresses a generalization of the matroid parity problem to delta-matroids. We give a minimax relation, as well as an efficient algorithm, for linearly represented deltamatroids. These are natural extensions of the minimax theorem of Lovász and the augmenting path algorithm of Gabow and Stallmann for the linear matroid parity problem. r 2003 Elsevier Science (USA). All rights reserved.
متن کاملIntroduction to Combinatorial Optimization in Matroids
1. Matroids and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 2. Greedy Algorithm and Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 3. Duality, Minors and Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کامل